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Axially 4,40-di-tert-butyl TunePhos-type chiral diphosphine ligand was designed and synthesized by
means of central-to-axial chirality transfer. Up to 99% and 98% ee have been achieved in Ru-catalyzed
hydrogenation of b-alkyl and b-aryl-substituted b-keto esters, respectively.
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Catalytic asymmetric synthesis mediated by transition metal
complex is one of the most powerful methods for the construction
of enantiomerically pure compounds, and the elaborate design of
chiral ligands plays a crucial role in this area.1 Since the signifi-
cantly successful achievements of BINAP2 in the asymmetric catal-
ysis, many atropisomeric C2-symmetric bisphosphine ligands, such
as MeO–BIPHEP,3 TunePhos,4 P–Phos,5 SegPhos,6 SynPhos,7 Diflu-
orPhos,8 and other important biaryl phosphine ligands,9 have been
developed in the past two decades (Fig. 1). Although a diverse array
of phosphine ligands is reported, developing easily preparable and
efficient ligands is still of great importance.

Recently, we and Chan have developed chiral-bridged atropiso-
meric diphosphine ligands by means of central-to-axial chirality
transfer,10,11 and the advantage of this method is that the tedious
resolution procedure could be avoided for achieving enantiomeri-
cally pure diphosphine ligands. Herein, we report an efficient ap-
proach to a new class of substituted TunePhos-type ligands
containing tert-butyl groups at the 4,40-position,12 which showed
excellent enantioselectivities in Ru-catalyzed hydrogenation of b-
keto esters, a reaction that has attracted considerable attention
recently.13

The synthesis of ligand 1 is outlined in Scheme 1. Compound 3
was obtained in high yield through the efficient substitution reac-
tion of the commercially available compound 2 with NaOMe in
DMF at 80 �C in 94.5% yield. Treatment of the Grignard reagent
of 3 with chlorodiphenylphosphine followed by the addition of
H2O2 afforded the phosphine oxide 4 conveniently. The iodide
compound 5 was synthesized through ortho-lithiation with n-BuLi
followed by I2 quenching. Demethylation of 5 with BBr3 at 0 �C
gave the corresponding phenol 6. Reaction of 6 with (2S,4S)-pen-
ll rights reserved.
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tanediol di-p-tosylate afforded the linked phosphine oxide 7,
which underwent subsequent Ullmann coupling to generate the
corresponding diphosphine dioxide 8 in 69% yield with excellent
enantio/diastereoselectivity (>99% ee and dr based on the 1H and
31P NMR analysis). The axial chirality was assigned as S according
to the literature report.10 Finally, HSiCl3 reduction of enantiomeri-
cally pure 8 in the presence of tributylamine afforded the desired
ligand 1.14

To evaluate the effectiveness of ligand 1, the Ru-catalyzed
asymmetric hydrogenation of b-keto ester was investigated. We
initiated our studies by choosing methyl acetoacetate 9 as the
model substrate to examine the catalytic activity of
RuCl2(1)(DMF)m complex.15 Hydrogenation was conducted at
50 �C and under 50 atm of hydrogen pressure with 0.5 mol % cata-
O

SEGPhosSynPhos
O

R

R = H, Cn-Tunephos, n = 1-6
R = Me, PQ-Phos

Figure 1. Examples of some atropisomeric C2-symmetric biaryl ligands.
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Scheme 2. Asymmetric hydrogenation of methyl acetoacetate 9 catalyzed by
RuCl2(1)(DMF)m complex.
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Scheme 1. Reagents and conditions: (a) MeONa, DMF, 80 �C; (b) (i) Mg, THF, reflux;
(ii) ClPPh2, 0 �C; (iii) H2O2; (c) (i) LDA, 0 �C; (ii) I2; (d) BBr3, CH2Cl2, 0 �C; (e) (2S,4S)-
pentanediol di-p-tosylate, K2CO3, DMF, 80 �C; (f) Cu, DMF, 140 �C; (g) HSiCl3, Bu3N,
xylene, reflux.

Table 1
Ru-TangPhos catalyzed asymmetric hydrogenation of b-alkyl-substituted b-keto estera

0.5 mol% c

H2, EtO
11

O

Ar OEt

O

Entry Ar Temperature (oC)

1 Ph (11a) 50
2 Ph (11a) 50
3 Ph (11a) 80
4 4-Me-Ph (11b) 50
5e 4-Me-Ph (11b) 50
6 2-Me-Ph (11c) 50
7 3-MeO-Ph (11d) 50
8 2-MeO-Ph (11e) 50
9 3-Br-Ph (11f) 50
10 4-Br -Ph (11g) 50
11 4-Cl-Ph (11h) 50

a The hydrogenations were carried out in EtOH with 0.5 mol % Ru–RuCl2(1)(DMF)m as
b Enantiomeric excesses were determined by chiral GC on chiral select 1000 capillary
c Enantiomeric excesses were determined by chiral HPLC on chiralpak AS-H column.
d The absolute configurations of the products were determined by comparing the opt
e The hydrogenations were carried out in EtOH with 0.1 mol % Ru–RuCl2(1)(DMF)m as
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lyst. The reactions were completed in 5 h, and up to 99% ee was ob-
tained (Scheme 2). Enhanced level of enantioselectivity in asym-
metric hydrogenation of methyl acetoacetate over that of C3-
TunePhos illustrates the potential benefits of the extra substitu-
tions.4a The result is comparable to those obtained with Ru–BINAP
system.

Although the Ru–BINAP system has been recognized as an effi-
cient and general catalyst for hydrogenation of b-alkyl-substituted
b-keto esters, only inferior ee values were obtained for analogous
b-aryl-substituted b-keto esters.16 Asymmetric hydrogenation of
b-aryl-substituted b-keto esters remains a challenging task. Only
limited C2-symmetric bisphosphine ligands have been reported
to show good to excellent ee in the Ru-catalyzed hydrogenation
of b-aryl-substituted b-keto esters recently.17 For example, up to
99% ee has been reported with bisphosphinite ligands17e and
4,40-substituted BINAP ligands.17f

To our delight, RuCl2(1)(DMF)m complex also showed excellent
enantioselectivities for b-aryl-substituted b-keto esters. The results
are summarized in Table 1. Under the optimized reaction condi-
tion, a series of b-aryl-substituted b-keto esters proceeded
smoothly to give the desired hydrogenation products (Table 1, en-
tries 3–11). It appears that the steric and electric properties of the
substituent on the aromatic ring have a very limited effect on the
enantioselectivities. For b-aryl-substituted b-keto esters with elec-
tron-donating group on the phenyl ring, 94–98% ee were observed
(Table 1, entries 1 and 4–8). The best results were obtained in the
hydrogenation of 3-(4-tolyl)-3-oxo-propionic acid ethyl ester
(11b), and up to 98% ee was achieved (Table 1, entry 4). Complete
conversion and very high ee value were still observed even when
the hydrogenation of 11b was carried out with 0.1 mol % catalyst
loading (Table 1, entry 5). By comparing the result for 11a (72%
ee) achieved with C3-TunePhos,4a we found that the new 4,40-di-
tert-butyl TunePhos-type chiral diphosphine exhibited higher
asymmetric induction, which could be attributed to the similar
transition state proposed by Lin and coworkers using 4,40-substi-
tuted BINAP ligands.17f

In summary, we have developed a new 4,40-di-tert-butyl Tune-
Phos-type chiral diphosphine ligand by means of central-to-axial
chirality transfer, and we showed its utility in the asymmetric
Ru-catalyzed hydrogenation of b-keto esters, and up to 99% ee
has been observed for both b-alkyl-substituted and b-aryl-substi-
atalyst

H
12

OH

Ar OEt

O

*

H2 (atm) ee (%) Configurationd

30 95b R
50 96b R
30 95b R
30 98c R
30 98c R
30 94b R
30 94b R
30 94b R
30 93b R
30 95c R
30 95c R

catalyst precursor. All reactions were completed in 100% conversion.
column.

ical rotation with the reported data.
catalyst precursor.
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tuted b-keto esters. Further applications of the new ligand in other
transition metal-catalyzed reactions are underway, and will be dis-
closed in due course.
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